штурман-оператор - vertaling naar frans
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

штурман-оператор - vertaling naar frans

Наводчик-оператор; Стрелок-оператор; Оператор бортового вооружения; Оператор-наводчик
  • ''Оператор'' и [[робот]] [[ВС США]] для поиска взрывных устройств. [[Ирак]].

штурман-оператор      
(РЛС) navigateur-radariste
C.F.C.O.A. = centre de formation des contrôleurs d'opérations aériennes      
центр подготовки операторов [штурманов] наведения
C.I. = contrôleur d'interception      
оператор пункта управления перехватом; штурман наведения перехватчиков

Definitie

Операторы

в квантовой теории, математическое понятие, широко используемое в математическом аппарате квантовой механики (См. Квантовая механика) и квантовой теории поля (См. Квантовая теория поля) и служащее для сопоставления определённому вектору состояния (или волновой функции) ψ др. определённых векторов (функций) ψ'. Соотношение между ψ и ψ' записывается в виде ψ' = L̂ψ, где L̂ - оператор. В квантовой механике физическим величинам (координате, импульсу, моменту количества движения, энергии и т.д.) ставятся в соответствие О. L̂ (О. координаты, О. импульса и т.д.), действующие на вектор состояния (или волновую функцию) ψ, т. е. на величину, описывающую состояние физической системы.

Простейшие виды О., действующих на волновую функцию ψ(х) (где х - координата частицы), - О. умножения (например, О. координаты ,ψ = хψ) и о. дифференцирования (например, О. импульса , ψ =, где i - мнимая единица, ħ - постоянная Планка). Если ψ - вектор, компоненты которого можно представить в виде столбца чисел, то О. представляет собой квадратную таблицу - матрицу (См. Матрица).

В квантовой механике в основном используются линейные операторы (См. Линейный оператор). Это означает, что они обладают следующим свойством: если L̂ψ1 = ψ'1 и L̂ψ2 = ψ'2, то L̂(c1ψ1 + c2ψ2) = c1ψ'1 + c2ψ'2, где c1 и с2 - комплексные числа. Это свойство отражает Суперпозиции принцип - один из основных принципов квантовой механики.

Существенные свойства О. L̂ определяются уравнением L̂ψn = λnψn, где λn - число. Решения этого уравнения ψn называется собственными функциями (собственными векторами) оператора L̂. Собственные волновые функции (собственные векторы состояния) описывают в квантовой механике такие состояния, в которых данная физическая величина L имеет определённое значение λn. Числа λn называется собственными значениями О. L̂, а их совокупность - спектром О. Спектр может быть непрерывным или дискретным; в первом случае уравнение, определяющее ψ n, имеет решение при любом значении λn (в определённой области), во втором - решения существуют только при определённых дискретных значениях λn. Спектр О. может быть и смешанным: частично непрерывным, частично дискретным. Например, О. координаты и импульса имеют непрерывный спектр, а О. энергии в зависимости от характера действующих в системе сил - непрерывный, дискретный или смешанный спектр. Дискретные собственные значения О. энергии называются энергетическими уровнями.

Собственные функции и собственные значения О. физических величин должны удовлетворять определённым требованиям. Т. к. непосредственно измеряемые физич. величины всегда принимают веществ. значения, то соответствующие квантовомеханич. О. должны иметь веществ. собств. значения. Далее, поскольку в результате измерения физич. величины в любом состоянии ψ должно получаться одно из возможных собств. значений этой величины, необходимо, чтобы произвольная волновая функция (вектор состояния) могла быть представлена в виде линейной комбинации собств. функций (векторов) ψn О. этой физич. величины; др. словами, совокупность собств. функций (векторов) должна представлять полную систему. Этими свойствами обладают собств. функции и собств. значения т.н. самосопряжённых О., или эрмитовых операторов (См. Эрмитов оператор).

С О. можно производить алгебраич. действия. В частности, под произведением О. L̂1 и L̂2 понимается такой О. L̂ = 12, действие которого на вектор (функцию) ψ даёт L̂ψ = ψ'', если L̂2ψ = ψ' и L̂1ψ' = ψ''. Произведение О. в общем случае зависит от порядка сомножителей, т. е. 12 21. Этим алгебра О. отличается от обычной алгебры чисел. Возможность перестановки порядка сомножителей в произведении двух О. тесно связана с возможностью одновременного измерения физических величин, которым отвечают эти О. Необходимым и достаточным условием одновременной измеримости физических величин является равенство L̂12 = 21 (см. Перестановочные соотношения).

Уравнения квантовой механики могут быть формально записаны точно в том же виде, что и уравнения классической механики (гейзенберговское представление в квантовой механике), если заменить физические величины, входящие в уравнения классической механики, соответствующими им О. Всё различие между квантовой и классической механикой сведется тогда к различию алгебр. Поэтому О. в квантовой механике иногда называют q-числами, в отличие от с-чисел, т. е. обыкновенных чисел, с которыми имеет дело классическая механика.

О. можно не только умножать, но и возводить в степень, образовывать из них ряды и рассматривать функции от О. Произведение эрмитовых О. в общем случае не является эрмитовым. В квантовой механике используются и неэрмитовы О., важным классом которых являются унитарные операторы (См. Унитарный оператор). Унитарные О. не меняют норм ("длин") векторов и "углов" между ними. Неизменность нормы вектора состояния даёт возможность интерпретации его компонент как амплитуд вероятности равным образом в исходной и преобразованной функции. Поэтому действием унитарного О. описывается развитие квантовомеханической системы во времени, а также её смещение как целого в пространстве, поворот, зеркальное отражение и др. Выполняемые унитарными О. преобразования (унитарные преобразования) играют в квантовой механике такую же роль, какую в классической механике играют канонические преобразования (см. Механики уравнения канонические).

В квантовой механике применяется также О. комплексного сопряжения, не являющийся линейным. Произведение такого О. на унитарный О. называются антиунитарным О. Антиунитарные О. описывают преобразование обращения времени (См. Обращение времени) и некоторые др.

В теории квантовых систем, состоящих из тождественных частиц, широко применяется метод квантования вторичного (См. Квантование вторичное), в котором рассматриваются состояния с неопределённым или переменным числом частиц и вводятся О., действие которых на вектор состояния с данным числом частиц приводит к вектору состояния с измененным на единицу числом частиц (О. рождения и поглощения частиц). О. рождения или поглощения частицы в данной точке х, (х) формально подобен волновой функции ψ(х), как q- и с-числа, отвечающие одной и той же физической величине соответственно в квантовой и классической механике. Такие О. образуют квантованные поля, играющие фундаментальную роль в релятивистских квантовых теориях (квантовой электродинамике, теории элементарных частиц; см. Квантовая теория поля).

В. Б. Берестецкий.

Wikipedia

Оператор (военное дело)

Оператор (в военном деле) — человек или другая материализованная разумная сущность, выполняющая роль первичного звена в связке «оператор—машина», где под машиной подразумевается любой сложносоставной образец вооружения и военной техники (станция, комплекс или система).

В указанной комбинации оператор является её функцией, в субъект-объектном плане в терминах теории управления «машина» — это объект управления, «оператор» — субъект управления/воздействия/взаимодействия. В том случае, если основной выполняемой функцией оператора является ведение стрельбы из ствольного или ракетного вооружения, применяется уточняющий термин стрелок-оператор или наводчик-оператор. Вопросам взаимодействия оператора с машиной, повышения быстродействия звеньев, оптимизации затрат энергетических и других ресурсов, повышения качества и результативности боевой работы, снижения расходов времени и средств, и др. посвящена наука эргономика.

Voorbeelden uit tekstcorpus voor штурман-оператор
1. А командир экипажа и штурман-оператор были незамедлительно доставлены в свой гарнизонный госпиталь, где прошли медицинское обследование.
2. Предположительно он был сбит зенитным ракетным комплексом "Бук". Штурман корабля гвардии майор Виктор Прядкин и штурман-оператор гвардии майор Игорь Нестеров погибли.
3. На снимках: штурман отряда майор Игорь ГОЛУБЕВ (справа), начинавший службу в Новонежино, и штурман-оператор старший лейтенант Алексей МОСИН; посадка вертолета Ка-27ПС на палубу корабля.
4. На снимке: корабельные вертолетчики ЧФ во время выполнения задания на ГРКР "Москва" - командир экипажа майор Александр Левин, штурман экипажа капитан Сергей Олейников, штурман-оператор Виктор Лазутин.
5. Штурман-оператор стратегического ракетоносца Ту-22М3 гвардии старший лейтенант Григорий Мурашкин и "правый" летчик Ту-22М3 гвардии старший лейтенант Сергей Мишин построили двускатную палатку.